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Abstract—Existing cryptocurrencies and smart contract plat-
forms are known to have scalability issues, i.e., the number of
transactions they are capable of processing per second is limited,
usually less than 10. As the number of applications utilizing
public cryptocurrencies and smart contract platforms grow, the
demand for processing high transaction rates in the order of
hundreds and thousands of Tx/s is increasing.

In this work, we present ZILLIQA— a new blockchain platform
that is designed to scale in transaction rates. As the number of
miners in ZILLIQA increases, its transaction rates are expected to
increase. At Ethereum’s present network size of 30,000 miners,
ZILLIQA would expect to process about a thousand times the
transaction rates of Ethereum. The cornerstone in ZILLIQA’s
design is the idea of sharding — dividing the mining network
into smaller shards each capable of processing transactions in
parallel.

ZILLIQA further proposes an innovative special-purpose smart
contract language and execution environment that leverages the
underlying architecture to provide a large scale and highly
efficient computation platform. The smart contract language in
ZILLIQA follows a dataflow programming style which makes it
ideal for running large-scale computations that can be easily
parallelized. Examples include simple computations such as
search, sort and linear algebra computations, to more complex
computations such as training neural nets, data mining, financial
modeling, scientific computing and in general any MapReduce
task.

I. INTRODUCTION

Cryptocurrencies and smart contract platforms are becom-
ing a shared computational resource. One could view these
platforms as a new generation of computers that synchronize
over thousands of individual computers. However, existing
cryptocurrencies and smart contract platforms have widely
recognized limitations in scaling. Average transaction rates in
Bitcoin [1], Ethereum [2], and related cryptocurrencies have
been limited to below 10 (usually about 3-7) transactions
per second (Tx/s). As the number of applications utilizing
public cryptocurrencies and smart contract platforms grow, the
demand for processing high transaction rates in the order of
hundreds of Tx/s is increasing. A global payment network
would likely require tens of thousands of Tx/s in capacity.
Can we build a decentralized and open blockchain platform
capable of processing at that scale?

The limitations in scaling up existing protocols are some-
what fundamental — they are rooted in the design of the

consensus and network protocols. Therefore, even though re-
engineering the parameters of the existing protocols in say
Bitcoin or Ethereum (e.g., the block size or the block rate)
may show some speedup, to support applications that need
processing of thousands of Tx/s however requires rethinking
the underlying protocols from scratch.

We present ZILLIQA— a new blockchain platform that is
designed to scale in transaction rates. As the number of miners
in ZILLIQA increases, its transaction rates are expected to
increase as well. Specifically, ZILLIQA’s design allows its
transaction rates to roughly double with every few hundred
nodes added to its network. As of this writing, the Ethereum
mining network is over 30,000 nodes. At Ethereum’s present
capacity, ZILLIQA would expect to process about a thousand
times the transaction rates of Ethereum.

ZILLIQA is a redesign from scratch and has been under
research and development for over 2 years. The cornerstone
in ZILLIQA’s design is the idea of sharding — dividing the
mining network into smaller consensus groups called shards
each capable of processing transactions in parallel. If the
mining network of ZILLIQA is say 8000 miners, ZILLIQA
automatically creates 10 sub-networks each of size 800 miners,
in a decentralized manner without a trusted co-ordinator. Now,
if one sub-network can agree on a set of (say) 100 transactions
in one time epoch, then 10 sub-networks can agree on a total
of 1000 transactions in aggregate. The key to aggregating
securely is to ensure that sub-networks process different trans-
actions (with no overlaps) without double-spending.

The assumptions are similar to existing blockchain-based
solutions. We assume that the mining network will have a frac-
tion of malicious nodes/identities with a total computational
power that is a fraction (< 1/4) of the complete network.
It is based on a standard proof-of-work scheme, however, it
has a new two-layer blockchain structure. It features a highly
optimized consensus algorithm for processing shards.

ZILLIQA further comes with an innovative special-purpose
smart contract language and execution environment that lever-
age the underlying architecture to provide a large scale and
highly efficient computation platform. The smart contract
language in ZILLIQA follows a dataflow programming style,
where the smart contract can be represented as a directed
graph. Nodes in the graph are operations or functions, while
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an arc between two nodes represent the output of the first and
the input to the second. A node gets activated (or operational)
as soon as all of its inputs become valid and thus a dataflow
contract is inherently parallel and suitable for decentralized
systems such as ZILLIQA.

The sharded architecture is ideal for running large-scale
computations that can be easily parallelized. Examples include
simple computations such as search, sort and linear algebra
computations, to more complex computations such as train-
ing a neural net, data mining, financial modeling, scientific
computing and in general any MapReduce task among others.

This document outlines the technical design of ZILLIQA
blockchain protocol. ZILLIQA has a new, conceptually clean
and modular design. It has six layers: the cryptographic layer
(Section III), data layer (Section IV), the network layer (Sec-
tion V), the consensus layer (Section VI), the smart contract
layer (Section VII) and the incentive layer (Section VIII).
Before we present the different layers, we first discuss the
system settings, underlying assumptions and threat model
in Section II.

II. SYSTEM SETTING AND ASSUMPTIONS

Entities in ZILLIQA. There are two main entities in
ZILLIQA: users and miners. A user is an external entity
who uses ZILLIQA’s infrastructure to transfer funds or run
smart contracts. Miners are the nodes in the network who
run ZILLIQA’s consensus protocol and get rewarded for their
service. In the rest of this whitepaper, we interchangeably use
the terms miner and node.

ZILLIQA’s mining network is further divided into several
smaller networks referred to as a shard. A miner is assigned
to a shard by a set of miners called DS nodes. This set of DS
nodes is also referred to as the DS committee. Each shard and
the DS committee has a leader. The leaders play an important
role in the ZILLIQA’s consensus protocol and for the overall
functioning of the network.

Each user has a public, private key pair for a digital signa-
ture scheme and each miner in the network has an associated
IP address and a public key that serves as an identity.

Intrinsic token. ZILLIQA has an intrinsic token called
Zillings or ZILs for short. Zillings give platform usage rights
to the users in terms of using it to pay for transaction
processing or run smart contracts. Throughout this whitepaper,
any reference to amount, value, balance or payment, should
be assumed to be counted in ZIL.

Adversarial model. We assume that the mining network at
any point of time has a fraction of byzantine nodes/identities
with a total computational power that is at most f < n

4 of the
complete network, where 0 ≤ f < 1 and n is the total size
of the network. The factor 1

4 is an arbitrary constant bounded
away from 1

3 selected as such to yield reasonable constant
parameters. We further assume that honest nodes are reliable
during protocol runs, and failed or disconnected nodes are
counted in the byzantine fraction.

Byzantine nodes can deviate from the protocol, drop or
modify messages and send different messages to honest nodes.

Further, all byzantine nodes can collude together. We assume
that the total computation power of the byzantine adversaries
is still confined to standard cryptographic assumptions of
probabilistic polynomial-time adversaries.

We however assume that messages from honest nodes (in
the absence of network partition) can be delivered to honest
destinations after a certain bound δ, but δ may be time-varying.
The bound δ is used to ensure liveness but not safety [3]. In
case such timing and connectivity assumptions are not met, it
becomes possible for byzantine nodes to delay the messages
significantly (simulating a gain in computation power) or
worse “eclipse” the network [4]. In the event of network
partition, as dictated by the CAP theorem, one can only choose
between consistency and availability [5]. In ZILLIQA, we
choose to be consistent and sacrifice availability.

III. CRYPTOGRAPHIC LAYER

The cryptographic layer defines the cryptographic primi-
tives used in ZILLIQA. Similar to several other blockchain
platforms, ZILLIQA relies on elliptic curve cryptography for
digital signatures and a memory-hard hash function for proof-
of-work (PoW).

Throughout this whitepaper, we extensively use SHA3 [6]
hash function to present our design. SHA3 is originally based
on Keccak [7] which is widely used in different blockchain
platforms in particular Ethereum. In the near future, we may
switch to Keccak to enable better interoperability with other
platforms.

A. Schnorr Signature

ZILLIQA employs Elliptic Curve Based Schnorr Signature
Algorithm (EC-Schnorr) [8] as the base signing algorithm.
We instantiate the scheme with secp256k1 curve [9]. The
same curve is currently used in Bitcoin and Ethereum but for
a different signing algorithm called ECDSA. Choosing EC-
Schnorr over ECDSA has several benefits that we discuss
below:

1) Non-malleability: Informally put, the non-malleability
property means that given a set of signatures generated on
a message using a private key, it should be hard for an
adversary to produce a new signature for the same message
that is valid for the corresponding public key. Unlike ECDSA
which is malleable, EC-Schnorr has been proven to be non-
malleable [10].

2) Multisignature: A multisignature scheme allows multi-
ple signers to “aggregate” their signatures on a given message
into a single signature which can be authenticated against a
single public key that “aggregates” the keys of all the autho-
rized parties. While, EC-Schnorr is natively a multisignature
scheme (see [11]), ECDSA allows creating multisignatures but
in a less flexible way.

ZILLIQA uses EC-Schnorr based multisignatures to reduce
the signature size when multiple signatures are required on a
message. Smaller signatures are particularly important in our
consensus protocol where multiple parties need to agree on a
data by signing it.
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3) Speed: EC-Schnorr is faster than ECDSA since the latter
requires computing an inverse modulo a large number. No
inversion is required in EC-Schnorr.

The exact EC-Schnorr key generation, signing and verifica-
tion procedures are given in Appendix A. In the Appendix, we
also present how EC-Schnorr can be used as a multisignature
scheme.

B. Proof of Work

ZILLIQA uses PoW only to prevent Sybil attacks and
generate node identities. This is in contrast to many ex-
isting blockchain platforms (in particular Bitcoin [1] and
Ethereum [12]), where PoW is used to reach distributed
consensus. ZILLIQA employs Ethash [13], the PoW algorithm
used in Ethereum 1.0.

Ethash is a memory hard hash function designed to make it
easy to mine with GPUs but hard with specialized computing
hardware such as ASICs. To achieve this, Ethash computation
requires a considerable amount of memory (in GBs) and I/O
bandwidth such that the function cannot be invoked in parallel
on specialized computing hardware.

Roughly speaking, Ethash takes a data (for instance a block
header) and a nonce of 64-bits as inputs and generates a 256-
bits digest. The algorithm consists of four subroutines which
are run in the given order:

1) Seed generation: Seed is a SHA3-256 digest which is
updated after every 30000 blocks called an epoch. For
the first epoch it is the SHA3-256 hash of a series of
32 bytes of zeros. For every other epoch it is always the
SHA3-256 hash of the previous seed.

2) Cache generation: The seed is used to generate a pseu-
dorandom cache using SHA3-512. The size of the cache
linearly increases with epoch. The initial size of the cache
is 16 MB.

3) Dataset generation: The cache is then used to generate
a dataset, where each “item” in the dataset depends on
only a small number of items in the cache. The dataset
is updated once every epoch so that the miners do not
have to make changes to it very frequently. The size of
the dataset also increases linearly with epoch. The initial
size of the dataset is 1 GB.

4) Mining and Verification: Mining involves grabbing ran-
dom slices of the dataset and hashing them together.
Verification uses the cache to regenerate the specific
pieces of the dataset needed to compute the hash.

IV. DATA LAYER

Broadly speaking, the data layer defines the data that
constitutes the global state of ZILLIQA. By extension, it also
defines the data needed by the different entities in ZILLIQA
to update its global state.

A. Accounts, Addresses and State

ZILLIQA is an account-based system (as Ethereum). There
are two types of accounts: normal account and contract

account. A normal account is created by generating an EC-
Schnorr private key. A contract account is created by another
account.

Each account is identified by an address derived differently
depending on its type. The address for a normal account is
derived from the account’s private key. For a given private
key sk, the address Anormal is a 160-bit value computed as:

Anormal = LSB160(SHA3-256(PubKey(sk))),

where, LSB160(·) returns the rightmost 160 bits of the input
and PubKey(·) returns the public key corresponding to the in-
put secret key. The address for a contract account is computed
from the address of its creator and how many transactions the
creator account has sent, aka account nonce (described below).

Acontract = LSB160(SHA3-256(address||nonce)),

where, address is the address of the creator account, and
nonce is the creator’s nonce value.

Each account (whether normal or contract) is associated
with an account state. The account state is a key, value store
and comprises of the following keys:

1) account nonce: (64 bits) A counter (initialized to
0) that counts the number of transactions sent from a
normal account. In case of a contract account, it counts
the number of contract creations made by the account.

2) balance: (128 bits) A non-negative value. Whenever
an account receives tokens from another account, the
received amount is added to the account’s balance.
When an account sends tokens to another account, the
balance is reduced by the appropriate amount.

3) code hash: (256 bits) This stores SHA3-256 digest
of the contract code. For a normal account it is the
SHA3-256 digest of the empty string.

4) storage root: (256 bits) Each account has a storage
which is again a key, value store with 256-bit keys and
256-bit values. storage root is a SHA3-256 digest
that represents this storage. For instance, if the storage is
a trie, then storage root is the digest of the root of
the trie.

The global state (state) of ZILLIQA is a mapping between
account addresses and account states. It is implemented using
a trie like data structure.

B. Transactions

A transaction is always sent from a normal account
address and it updates the global state of ZILLIQA. A
transaction has the following fields:

1) version (32 bits): Current version.
2) nonce (64 bits): A counter equal to the number of

transactions sent by the sender of this transaction.
3) to (160 bits): Destination account address. In case the

transaction creates a new contract account, this field is the
rightmost 160 bits of SHA3-256 of the empty string.

4) amount (128 bits): The transaction amount to be trans-
ferred to the destination address.
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5) gas price (128 bits): Gas is defined as the smallest
unit of computation. gas price is the amount that the
sender is willing to pay per unit of gas for computations
incurred in the transaction processing.

6) gas limit (128 bits): The maximum amount of gas
that should be used while processing the transaction.

7) code (unlimited): An expandable byte array that spec-
ifies the contract code. It is present only when the
transaction creates a new contract account.

8) data (unlimited): An expandable byte array that speci-
fies the data that should be used to process the transaction.
It is present only when the transaction invokes a call to
a contract at the destination address.

9) pubkey (264 bits): An EC-Schnorr public key that
should be used to verify the signature. The pubkey field
also determines the sending address of the transaction.

10) signature (512 bits): An EC-Schnorr signature on the
entire data.

Each transaction is uniquely identified by a
transaction ID — a SHA3-256 digest of the transaction
data that excludes the signature field.

C. Blocks
The ZILLIQA protocol introduces two types of blocks (and

thereby two blockchains): transaction blocks (TX-Block) and
directory service blocks (DS-Block). TX-Block contains the
transactions sent by users, while DS-Block contains metadata
about the miners who participate in the consensus protocol.

1) DS Blocks: A DS-Block has two parts: the header
and the signature. The header part of DS-Block has the
following fields:

1) version (32 bits): Current version.
2) previous hash (256 bits): The SHA3-256 digest of

its parent block header.
3) pubkey (264 bits): The public key of the miner who did

PoW on this block header.
4) difficulty (64 bits): This can be calculated from the

previous block’s difficulty and the block number. It stores
the difficulty of the PoW puzzle.

5) number (256 bits): The number of ancestor blocks. The
genesis block has a block number of 0.

6) timestamp (64 bits): Unix’s time() at the time of
creation of this block.

7) mixHash (256 bits): A digest calculated from nonce
which allows detecting DoS attacks.

8) nonce (64 bits): A solution to the PoW.
The signature part of DS-Block contains the following

two fields:
1) signature (512 bits): The signature is an EC-Schnorr

based multisignature on the DS-Block header signed by
DS nodes.

2) bitmap (1024 bits): It records which DS nodes partic-
ipated in the multisignature. We denote the bitmap by a
bit vector B, where, B[i] = 1 if the i-th node signed the
header else B[i] = 0.

DS-Blocks form a DS blockchain.

2) Transaction Blocks: As discussed earlier, a DS-Block
contains information on the nodes who reach consensus on
transactions. TX-Block stores information on which transac-
tions were agreed upon by the nodes in a DS-Block. Every
DS-Block is linked to multiple TX-Blocks. A TX-Block has
three parts: header, data and signature. The header
consists of the following fields:

1) type (8 bits): A TX-Block is of two types, micro
block (0x00) and final block (0x01). More on these
in Section V-D.

2) version (32 bits): Current version.
3) previous hash (256 bits): The SHA3-256 digest of

its parent block header.
4) gas limit (128 bits): Current limit for gas expenditure

per block.
5) gas used (128 bits): Total gas used by transactions in

this block.
6) number (256 bits): The number of ancestor blocks. The

genesis block has a block number of 0.
7) timestamp (64 bits): Unix’s time() at the time of

creation of this block.
8) state root (256 bits): It is a SHA3-256 digest

that represents the global state after all transactions are
executed and finalized. If the global state is stored as a
trie, then state root is the digest of the root of the
trie.

9) transaction root (256 bits): It is a SHA3-256
digest that represents the root of the Merkle tree that
stores all transactions that are present in this block.

10) tx hashes (each 256 bits): A list of SHA3-256 di-
gests of the transactions. The signature part of the
transaction is also hashed.

11) pubkey (264 bits): It is the EC-Schnorr public key of
the leader who proposed the block.

12) pubkey micro blocks (unlimited): It is a list of EC-
Schnorr public keys (each 264 bits in length). The list
contains the public keys of the leaders who proposed
transactions. The field is present only if it is a final block.

13) parent block hash (256 bits): It is the SHA3-256
digest of the previous final block header.

14) parent ds hash (256 bits): It is the SHA3-256
digest of its parent DS-Block header.

15) parent ds block number (256 bits): It is the par-
ent DS-Block number.

The data part of a TX-Block contains the set of transac-
tions. It has the following fields:

1) tx count (32 bits): The number of transactions in this
block.

2) tx list (unlimited): A list of transactions.
The signature part of a TX-Block contains an EC-

Schnorr based multisignature. It has the following two fields:
1) signature (512 bits): The signature is an EC-Schnorr

based multisignature on the TX-Block header signed by
a set of nodes. The signature is produced by a different
set of nodes depending on whether it is a micro block or
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a final block. Further details on the signatories is given
in Section V-D.

2) bitmap (1024 bits): It records which nodes participated
in the multisignature. We denote the bitmap by a bit
vector B, where, B[i] = 1 if the i-th node signed the
header else B[i] = 0.

The final blocks form the transaction blockchain. The
transaction blockchain does not include micro blocks.

V. NETWORK LAYER

ZILLIQA has been designed to scale in transaction rates. The
main idea is that of sharding, i.e., dividing the mining network
into small shards, each capable of processing transactions in
parallel. In this section, we present the idea of network and
transaction sharding.

A. Network Sharding

Network sharding, i.e., dividing the mining network into
smaller shards is a two-step process. First, a dedicated set of
nodes called the directory service committee (or DS commit-
tee) are elected which then shard the network and assign nodes
to their shard. We present these processes below in further
detail.

1) Directory Service Committee: To facilitate sharding of
the network, we first elect a group of nodes, called directory
service (DS) nodes. The DS nodes form a DS committee.
The election of DS nodes is based on a proof-of-work puzzle
that we refer to as PoW1. The algorithm for PoW1 is given
in Algorithm 1.

Algorithm 1: PoW1 for DS committee election.
Input: i: Current DS-epoch, DSi−1: Prev. DS committee

composition.
Output: header: DS-Block header.

1 On each competing node:
// get epoch randomness from the DS blockchain
// DBi−1: Most recent DS-Block before start of i-th epoch

2 r1 ← GetEpochRand(DBi−1)
// get epoch randomness from the transaction blockchain
// TBj : Most recent TX-Block before start of i-th epoch

3 r2 ← GetEpochRand(TBj)
// pk: node’s public key, IP = node’s IP address

4 nonce,mixHash← Ethash-PoW(pk,IP, r1, r2)
5 header← BuildHeader(nonce,mixHash, pk)

// header includes pk and nonce among other fields
// IP, header is multicast to members in the DS committee

6 MulticastToDSi−1(IP,header)
7 return header

Each node that has successfully produced a valid nonce
for PoW1 earlier than other nodes proposes a header for
a new DS-Block. Recall that a DS-Block has a header
and a signature part. When a node does a PoW1, it
only generates a DS-Block header. The header is then
multicast to the nodes in the DS committee. The DS committee
then runs a consensus on the proposed DS-Block header and
then builds a signature part. Once, 2f DS nodes have signed
the DS-Block header, it is committed to the DS blockchain.

After a successful bootstrapping phase, at any time, the
composition of the DS nodes is stipulated by a predefined
window of size n0. The most recent n0 nodes who have
successfully mined a DS-Block form the DS committee.

The average time between mining two consecutive DS-
Blocks is referred to as the DS-epoch. The value of
DS-epoch is set in a way to minimize the chances of two
competing blocks. At the start of a DS-epoch, a new DS
node joins the DS committee and the oldest member of the
DS committee is churned out. This fixes the size of the DS
committee to n0 during any DS-epoch. The newest member
of the DS committee then becomes the leader and leads the
consensus protocol for the epoch (see Section VI for the
consensus protocol). This further induces a strict ordering on
the members of the DS committee.

One can show that if the DS committee size is sufficiently
large (say above 800), then among the n0 members of the
committee at most 1

3 are byzantine with high probability.
2) Resolving Conflicts: Our consensus protocol (to be

presented in Section VI) does not permit forks in the DS
blockchain. The forks may occur when multiple nodes solve
the puzzle at roughly the same time. In order to resolve the
conflict, each DS node retrieves the nonce field from the
received headers and sorts them in the increasing order. Let
us suppose that the largest nonce for the i-th DS node is
nimax.

The leader of the DS committee then proposes his own
header (that corresponds to the largest nonce he has seen)
and runs a consensus protocol to agree on the DS-Block
header. The i-th DS node then agrees to accept the proposed
header only if the corresponding nonce is larger than or equal
to nimax. Once the consensus is reached, the signature part
of the DS-Block is built and the agreed upon winner then
becomes the leader.

3) Generating Shards: Once the DS committee is elected,
the actual sharding of the network can start. In order for a node
to participate in the underlying consensus protocol, it has to
perform a proof-of-work (PoW2). The sharding protocol is
repeated at the start of every DS-epoch. The algorithm for
PoW2 is given in Algorithm 2.

Algorithm 2: PoW2 for shard membership.
Input: i: Current DS-epoch, DSi: Current DS committee

composition.
Output: nonce, mixHash: outputs of Ethash-PoW

1 On each competing node:
// get epoch randomness from the DS blockchain
// DBi−1: Most recent DS-Block before start of i-th epoch

2 r ← GetEpochRand(DBi)
// pk: node’s public key, IP = node’s IP address

3 nonce,mixHash← Ethash-PoW(pk,IP, r)
// IP, header is multicast to members in the DS committee

4 MulticastToDSi(nonce,mixHash, pk,IP)
5 return nonce, mixHash

The computed valid nonce (and mixhash) for PoW2

is then multicast to the DS committee. The DS nodes will
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collectively accept just enough PoW solutions to be sharded
into l consensus committees or shards, each with n0 nodes to
run consensus. Once enough number of PoW2 solutions have
been received by the leader of the DS committee, he initiates a
consensus protocol to agree on the set of valid PoW2 solutions.
At the end of the consensus protocol, the leader generates an
EC-Schnorr multisignature signed by the DS nodes. In order
to proceed further, more than 2/3 of the DS nodes must have
agreed on the set of acceptable PoW2 solutions.

Sharding leverages a deterministic function to assign a node
to a shard. Let us assume that we need ` shards each having
n0 nodes. The nonce values are then sorted in the increasing
order and the first n0 nodes are assigned to the first shard, the
next n0 to the next shard and so on. The identity of the miner
who proposed the largest nonce within a shard is declared its
leader. This further induces a strict ordering on the members
of the shard.

One can also show that if n0 is sufficiently large (say above
800), then within each shard at most 1

3 are byzantine with high
probability.

B. Public Channel

The DS nodes publish certain information on the public
channel, including the identities and connection information
of the DS nodes, the list of nodes in each shard, as well as
the sharding logic for transactions (explained in Section V-D).
The public channel is untrusted and is assumed to be accessible
by all nodes. In our implementation, our broadcast primitive
implements such a public channel.

A user of our blockchain who would like to submit a
transaction for acceptance can then check the information
on sharding to get the shard responsible for processing her
transaction. The information published on the public channel
is expected to be signed by more than 2/3 of the DS nodes
that can be verified by any node or user.

C. New Nodes Joining ZILLIQA

For a new node to join the network, it can attempt to solve
PoW1 to become a DS node or a PoW2 to become a member
of a shard. To this end, it would need to obtain information
on the randomness required for a PoW1 or a PoW2 from the
blockchains. Once it obtains the randomness information, the
new node can submit its solution to the DS committee.

D. Transaction Sharding and Processing

As presented in Section V-A, network sharding creates
shards each capable of processing transactions in parallel.
In this section, we present how a particular transaction gets
assigned to a shard and how the transactions get processed.
For this purpose, we use the following abstraction: A n−→ B to
indicate a transaction of n ZIL from the sender’s account A
to the receiver’s account B.

1) Transaction Assignment: Any transaction say A n−→ B
gets processed by a single shard. Assuming that there are `
shards numbered from 0 to ` − 1, a transaction is assigned
to a shard identified by the blog2 `c + 1 rightmost bits of

the sender’s address, i.e., the address of the account A in
the example. As the account address is a 160-bit integer, `
is bounded above as:

blog2 `c+ 1 ≤ 160.

In practice though, ` will be smaller than 100.
Once the assigned shard is identified, the transaction is then

multicast to some nodes within the shard who then broadcast it
further. Once the transaction reaches the leader of the assigned
shard, it includes it in a TX-Block and runs the consensus
protocol.

Double spend (or replay attacks) can be easily detected
using the nonce present in every transaction. Recall that
each transaction has a nonce that counts the number of
transactions sent from the sender’s account. Once a transaction
gets into the transaction blockchain, the nonce is updated
in the account’s state and thereby in the global state. A
transaction with a nonce value smaller than or equal to the
current value in the global state gets rejected by the miners.

Sharding transactions based on the sender’s account address
natively allows shard members to detect double spend as every
transaction from a sender will be processed within the same
shard.

2) Transaction Processing: All the nodes within a commit-
tee can propose transactions. These transactions are sent to the
leader to run a consensus protocol on which set of transactions
forms the next TX-Block. Blocks proposed by each shard is
called a micro block (identified by the type marker 0x00). A
micro block contains an EC-Schnorr multisignature by more
than 2

3 nodes from the shard. The leader also builds a bitmap
B that identifies the public keys of the signers. B[i] = 1 if
the i-th member of the shard has signed the TX-Block header.
When a shard reaches a consensus on a TX-Block, its leader
multicasts the block header and the signature to some
of the DS nodes. The DS nodes then broadcast it within the
DS committee so that the block reaches its leader. The data
part of the block can be asynchronously sent to the nodes.

The DS committee then aggregates all blocks sent from
the shards, and runs another round of the consensus protocol
among themselves to agree on the final block. A final block
is a TX-Block identified by the type marker 0x01. A final
block contains an EC-Schnorr multisignature by more than
2
3n0 nodes from the DS committee. The leader in the DS
committee also builds a bitmap B that identifies the public
keys of the signers. B[i] = 1 if the i-th member of the DS
committee has signed the TX-Block header. The final block
header and the signature, is then multicast to some
nodes within each shard. The actual TX-Block data is not
sent by the DS nodes.

Within each shard the following steps are taken to process
the final block:

1) Each node in the shard verifies the EC-Schnorr multisig-
nature using the public keys of the DS nodes. If the
signatures are valid against more than 2

3n0 public keys
represented by the bitmap, then the nodes perform the
next checks.
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2) For each transaction hash included in the final block
header, the node checks whether its corresponding
transaction content is available. If the corresponding
transaction was proposed by the shard to which the node
belongs, then the hash of the transaction data is compared
with the hash contained in the final block header.
If the transaction was proposed by another shard, the
transaction data is shared asynchronously across shards.

3) Once the transaction data is available, the data part
of the final block is reconstructed and the TX-Block is
appended to the local transaction blockchain. The account
state and the global state are accordingly updated.

4) If the transaction content is not available, the node
temporarily invalidates the sending account of that trans-
action in its local view of accounts so that any other
pending transactions for this account are rejected until
the local transaction content can be brought in sync with
the global state. Such rejected transactions will have
to be retried by the sending node.

VI. CONSENSUS LAYER

As mentioned earlier, each shard and the DS committee have
to run a consensus protocol on the micro blocks and the final
blocks respectively. In this section, we present the consensus
layer which defines the consensus protocol to run within each
shard and the DS committee. In the rest of the discussion,
we refer to shards and the DS committees collectively as a
consensus group.

A. Practical Byzantine Fault Tolerance

The core of ZILLIQA’s consensus protocol relies on prac-
tical byzantine fault tolerance (PBFT) protocol proposed by
Castro and Liskov [3]. We however improve its efficiency by
using the idea of employing EC-Schnorr multisignature in the
PBFT protocol as developed in [14], [15]. Use of EC-Schnorr
multisignature lowers the normal case communication latency
from O(n2) to O(n) and reduces the signature size from O(n)
to O(1), where n is the size of the consensus group. In this
section, we present an overview of PBFT.

In PBFT, all the nodes within a consensus group are ordered
in a sequence, and it has one primary node (or leader) and the
others are referred to as backup nodes. Every round of PBFT
has three phases as discussed below:

1) Pre-prepare phase: In this phase, the leader announces
the next record (a TX-Block in our case) that the group
should agree on.

2) Prepare phase: Upon receiving the pre-prepare message,
every node validates its correctness and multicasts a
prepare message to all the other nodes.

3) Commit phase: Upon receiving more than 2
3n prepare

messages, a node multicasts a commit message to the
group Finally, a node waits for more than 2

3 commit
messages to ensure that a sufficient number of nodes
have made the same decision. Therefore, all honest nodes
accept the same valid record.

PBFT relies upon a correct leader to begin each phase and
proceed when the sufficient majority exists. In case the leader
is byzantine it can stall the entire consensus protocol. To
address this challenge, PBFT offers a view change protocol
to replace the byzantine leader with another one. If the
nodes do not see any progress for a bounded time, they can
independently announce the desire to change the leader. If a
quorum of more than 2

3n nodes decides that the leader is faulty,
then the next leader in a well-known schedule takes over.

Owing to the multicast of every node in the prepare/commit
phase, the communication complexity for PBFT in the normal
case is O(n2).

B. Improving Efficiency

Classical PBFT uses message authentication code (MAC)
for authenticated communication between nodes. As MAC
requires a secret key shared between every two nodes, the
nodes in one consensus group can agree on the same record
with a communication complexity of O(n2) per node. Due
to the quadratic complexity, PBFT becomes impractical when
the committee has over 20 nodes.

To improve the efficiency, we use the ideas inspired from
ByzCoin [15]:

1) We replace MAC with digital signatures to effectively
reduce the communication overhead to O(n).

2) In the meantime, to allow the other nodes to verify the
agreement, one typical way is to collect the signatures
from the honest majority and append them to the agree-
ment, thereby resulting in the agreement size linear in
the size of the consensus group. To improve on this, we
employ EC-Schnorr multisignatures to aggregate several
signatures into an O(1)-size multisignature.

We however cannot directly use the classical EC-Schnorr
multisignature scheme in the PBFT setting. This is because in
the classical setting all the signers agree on signing a given
message and the signature is valid only when all the signers
have signed the message. In the PBFT setting, we only require
that the message be signed by over 2

3n nodes in the consensus
group. One of the main modification required is to maintain
a bitmap B for the signers who participate in the signing
process. If the i-th node participated in the process, B[i] = 1,
else it is 0. The bitmap is build by the leader. The bitmap
can then be used by any verifier to validate the signature. The
resulting protocol is left in Appendix B.

C. ZILLIQA Consensus

In ZILLIQA, we use PBFT as the basis consensus protocol
and employ two rounds EC-Schnorr multisignatures to replace
the prepare and commit phases in PBFT. The different modi-
fications to the PBFT phases are explained below.

1) Pre-prepare phase: As in standard PBFT, the leader
distributes a TX-Block or a statement (signed by the
leader) to all the nodes in the consensus group.

2) Prepare phase: All honest nodes check the validity of
the TX-Block and the leader collects responses from
more than 2n

3 nodes. This guarantees that the statement
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proposed by the leader is safe and consistent with all
previous histories. The signature is generated using EC-
Schnorr multisignature. The leader also builds the bitmap
of nodes who signed the TX-Block.

3) Commit phase: To ensure that more than 2n
3 nodes

know the fact that more than 2n
3 nodes have verified the

TX-Block, we perform a second round of EC-Schnorr
multisignature. The statement being signed is the mul-
tisignature generated from the last round.

At the end of the three phases, the consensus is reached on
the TX-Block proposed by the leader.

D. Leader Change

In our consensus protocol, if the leader is honest, it can
drive the nodes in the consensus group to reach agreements on
new sets of transactions continuously. However, if the leader
is byzantine, it can intentionally delay or drop messages from
honest nodes, and slow down the protocol. To penalize such
malicious leaders, our protocol changes the leader of each
shard and the DS committee periodically. This prevents the
byzantine leader to stall the consensus protocol for an infinite
time. Since all the nodes are ordered, the next leader will been
chosen in a round robin manner.

In fact, the leader of a shard is changed after every micro
block and the leader of the DS committee is changed after
every final block. Let us assume that the size of the consensus
group is n, then within a DS-epoch, we allow a maximum
of n final blocks, each final block aggregating a maximum of
1 micro block per shard.

VII. SMART CONTRACT LAYER

ZILLIQA comes with an innovative special-purpose smart
contract language and execution environment that leverages
the underlying architecture to provide a large scale and highly
efficient computation platform. In this section, we present the
smart contract layer that employs a dataflow programming
architecture.

A. Computational Sharding using Dataflow Paradigm

ZILLIQA’s smart contract language and its execution plat-
form is designed to leverage the underlying network and
transaction sharding architecture. The sharded architecture is
ideal for running computation-intensive tasks in an efficient
manner. The key idea is the following: only a subset of the
network (such as a shard) would perform the computation. We
refer to this approach as computational sharding.

In contrast with existing smart contract architectures (such
as Ethereum), computational sharding in ZILLIQA takes a
very different approach towards how to process contracts.
In Ethereum, every full node is required to perform the
same computation to validate the outcome of the computation
and update the global state. Albeit being secure, such a
fully redundant programming model is prohibitively expen-
sive for running large-scale computations that can be easily
parallelized. Examples include simple computations such as
search, sort and linear algebra computations, to more complex

computations such as training a neural net, data mining,
financial modeling, etc.

ZILLIQA’s computational sharding approach relies on a
new smart contract language that is not Turing-complete but
scales much better for a multitude of applications. The smart
contract language in ZILLIQA follows a dataflow programming
style [16], [17]. In the dataflow execution model, a contract
is represented by a directed graph. Nodes in the graph are
primitive instructions or operations. Directed arcs between two
nodes represent the data dependencies between the operations,
i.e., output of the first and the input to the second. A node
gets activated (or operational) as soon as all of its inputs are
available. This stands in contrast to the classical von Neumann
execution model (as employed in Ethereum), in which an
instruction is only executed when the program counter reaches
it, regardless of whether or not it can be executed earlier.

The key advantage of employing a dataflow approach is
that more than one instruction can be executed at once. Thus,
if several nodes in the graph become activated at the same
time, they can be executed in parallel. This simple principle
provides the potential for massive parallel execution. To see
this, we present a simple sequential program in Figure 1a with
three instructions and in Figure 1b, we present its dataflow
variant. Under the von Neumann execution model, the program
would run in three time units: first computing A, then B and
finally C. The model does not capture the fact that A and B
can be independently computed. The dataflow program on the
other hand can compute these two values in parallel. The node
that performs addition gets activated as soon as A and B are
available.

A = x ∗ y
B = y/20
C = A+B

(a) A simple program.

x y 20

C

∗ /

+

A B

(b) Dataflow program.

Fig. 1: (a): A simple sequential program with three instructions
(b): Its dataflow variant.

When run on the ZILLIQA’s sharded network, each node in
the dataflow program can be eventually attributed to a single
shard or even a small subset of nodes within a shard. Hence the
architecture is ideal for any MapReduce style computational
tasks, where some node perform the mapping task while
another node can work as a reducer to aggregate the work
done by each mapper.

In order to facilitate the execution of a dataflow program,,
ZILLIQA’s smart contract language has the following features:

1) Operating over a virtual memory space shared globally
across the entire blockchain.
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2) Locking of intermediate cells in the virtual shared mem-
ory space during execution.

3) Checkpointing intermediate results during execution com-
mitted to blockchain.

B. Smart Security Budgeting

Apart form the benefits of parallelization offered from
the dataflow computation model, ZILLIQA further provides
a flexible security budgeting mechanism for computational
sharding. This feature is enabled by sharding the computa-
tional resources in the blockchain network via an overlay
above the consensus process. Computational sharding allows
users of ZILLIQA and applications running on ZILLIQA to
specify the sizes of consensus groups to compute for each
of the subtasks. Each consensus group will then be tasked to
compute the same subtask, and produce the results. The user
specifies the condition on acceptance of the results, e.g., all in
the consensus group must produce the same results, or 3/4 of
them must produce the same results, etc.

A user of the application running on ZILLIQA can budget
how much she wants to spend on computing and security,
respectively. In particular, a user running a particular deep
learning application may spend more gas fee on running more
of different neural network tasks than letting too many nodes
repeating the same computation. In this case, she can specify
a smaller consensus group for running each neural network
computation. On the other hand, a sophisticated financial
modeling algorithm that requires greater precision may task
consensus groups of larger number of nodes to compute the
critical portions of the algorithm to be more resilient against
potential tampering and manipulation of the results.

C. Scalable Applications: Examples

ZILLIQA aims to provide a platform to run highly scalable
computations in a multitude of fields such as data mining,
machine learning and financial modeling to name a few. Since
supporting efficient sharding of Turing-complete programs
is very challenging, and there exist public blockchains that
support Turing-complete smart contracts (e.g., Ethereum),
ZILLIQA focuses on specific applications with requirements
not met today.

1) Computation with parallelizable computation load:
Scientific computing over large data is a typical exam-
ple where one requires a large amount of distributed
computing power. Moreover, most of these computations
are highly parallelizable, examples include linear algebra
operations on large matrices, search in the sea of huge
amount of data and simulation on a large dataset among
others. ZILLIQA provides such computing tasks an inex-
pensive and short turnaround alternative. Moreover, with
the right incentive in place with computational sharding,
and security budgeting ZILLIQA can be leveraged as a
readily available and highly reliable resource for such
heavy computation load.

2) Train neural nets: With the ever growing popularity
and use cases of machine learning (in particular deep

learning), it is imperative to have an infrastructure that
allows deep learning models to train on large datasets. It
is well known that training on large datasets is crucial to a
model’s accuracy. To this end, ZILLIQA’s computational
sharding and dataflow language will be particularly useful
to build machine learning applications. It will serve as
an infrastructure that may run tools like TensorFlow1 by
tasking groups of ZILLIQA nodes to independently per-
form different computations such as computing gradients,
apply activation function, compute training loss, etc.

3) Application with high complexity and high precision
algorithms: Different from the applications mentioned
above, some applications, such as computations over
financial models, may require high precision. Any minor
deviation in one part of the computation may incur
heavy losses in investments. Such applications can task
consensus groups of larger number of nodes in ZILLIQA
to allow them to cross-check the computational results
of each other. The key challenge in offloading the com-
putational tasks of such financial modeling algorithms to
a public platform, such as ZILLIQA, is the concern for
data privacy and intellectual property of the algorithms.
To begin with, we envision certain well known portion of
such computation can be placed to ZILLIQA for efficient
and secure computation first, while the future research
and development of ZILLIQA will further strengthen the
protection of data privacy and intellectual property for
such applications.

VIII. INCENTIVE LAYER

A. Token Supply

ZILLIQA has a finite supply of 21 billion ZILs. The smallest
unit being 10−12 part of a ZIL. Each final TX-Block comes
with a block reward that generates new tokens. The block
reward will be spread over a period of 10 years decreasing
over time. We aim to mine roughly 80% of the tokens in the
first 4 years and the remaining 20% in the next 6 years. The
token emission will be “smooth” in the sense that the block
reward does not reduce drastically after a certain number of
blocks. The smooth reduction in the block reward means that
the network hashrate can be expected to be stable as the reward
reduces over gradually over time.

After 10 years, we expect to have reached significant scale
both in terms of the number of nodes in the network and users
executing transactions. By then, we expect the market to have
stabilized upon certain rates of transaction fees to fully sustain
the running of the network without a need for new tokens
entering the system as rewards.

B. Incentivizing Miners

Miners reach consensus on transactions, process them, per-
form computations as per the smart contract and update the
global state. Miners are hence incentivized by requiring the
sender of each transaction to pay some gas upfront.

1https://www.tensorflow.org/
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Recall that each final TX-Block aggregates at most one
micro block from each shard. Each micro TX-Block contains a
gas used field that stores the total gas used by transactions
in the block. Each final TX-Block also has a gas used field
that is a sum of all the gas used field of each micro TX-
Block. Once a TX-Block is proposed, the corresponding gas
used and the block reward is almost equitably distributed
among 1) the leaders of the shards who proposed one micro
block and 2) the leader of the DS committee who proposed
the final. In case the equitable distribution is not possible, the
distribution is slightly biased towards the leader of the DS
committee. Hence, if the reward is m and the total number
of stake holders for a reward is n, then the leader of each
shard gets bmn c, while, the leader of the DS committee gets
m− n · bmn c.

As the leader of each shard is changed once a new micro
block is proposed, every member of the shard gets rewarded.
Similarly, as the leader of the DS committee is changed after
every final block, every member of the DS committee is also
rewarded.

IX. RELATED WORK

ZILLIQA is developed upon the ideas of Bitcoin-NG [18],
collective signing (CoSi) [14], ByzCoin [15], Elastico [19] and
OmniLedger [20].

Bitcoin-NG first proposed the idea to decouple leader elec-
tion and his block proposals within Bitcoin. First, a leader
is elected by mining a keyblock who can then mint many
microblocks within the 10 minute block interval. The idea was
further used in ByzCoin [15].

The idea of network and transaction sharding for a Bit-
coin like system was first proposed in [19]. However, net-
work/transaction sharding alone cannot solve the scalability
issues as each shard needs to sign a TX-Block which makes
the total number of signatures linear in the number of signers.
This eventually results in a large block size and becomes a
bottleneck during the broadcast/multi-cast.

Multisignatures [11] provides a solution to the above prob-
lem. CoSi [14] uses an EC-Schnorr multisignature scheme to
design a protocol for collective signing. CoSi was proposed to
work in a much less hostile environment than that of a public
blockchain with byzantine nodes. With several significant
enhancements we develop for the CoSi scheme, we derive a
secure scheme and apply it to ZILLIQA.

Several other proposals have surfaced to sidestep the in-
herent scalability limitation of existing blockchain protocols,
for instance, re-parameterizing the original Bitcoin protocol
(e.g. increasing block sizes), moving as much computation off-
chain (e.g. micropayment channels and lightening networks),
creating hierarchy of blockchains (e.g. sidechains). None of
these protocols directly make the blockchain protocol itself
more scalable. ZILLIQA targets the heart of the scalability
problem – its blockchain.

ZILLIQA can be seen as an extension of ByzCoin and Om-
niLedger with several security and performance optimizations.

ZILLIQA also proposes a smart contract platform not available
in ByzCoin/OmniLedger.

ZILLIQA’s smart contract platform takes a different ap-
proach when compared with Ethereum. ZILLIQA’s smart
contract platform leverages the underlying sharding architec-
ture and is based on dataflow programming. The advantages
of dataflow programs are many: inherent concurrency and
parallelism, easy to reason about their correctness, natural
composability of functions and programs, etc.

X. FUTURE RESEARCH DIRECTIONS

Below, we discuss some ongoing and future directions of
research to improve ZILLIQA.

State sharding. With increase in ZILLIQA’s user base and
its high transaction throughput would come the following
challenge: How to efficiently handle the continuous influx of
blocks that modify the global state. This is also referred to
as state sharding in the literature. In essence, state sharding
will alleviate full nodes from storing and receiving all blocks
and transactions. This way it can further reduce the storage
and communication load for nodes, and thus constitute another
scaling-up factor to the throughput. However, it is non-trivial
to design a secure and efficient state sharding scheme, as
cross-shard communications arising from state sharding may
outweigh the performance gains. More research needs to be
done to address such additional complexities.

Secure Proof-of-Stake (SPoS). To the best of our knowl-
edge, there has been no literature that proposes a secure
PoS scheme, and thus we base ZILLIQA’s building blocks on
a PoW scheme. However, given the significant performance
gain from PoS for consensus algorithms, it is worthwhile
investigating further into the PoS paradigm, in search for a
secure and efficient PoS scheme for ZILLIQA.

Storage pruning. We are currently exploring ways to
securely prune the dated blocks stored on the blockchain to
reduce the storage requirements and ease the joining process
for new nodes. We may consider multi-grade storage, com-
pression of blocks and transactions as possible solutions.

Cross-Chain support. ZILLIQA has every intention to
complement other public blockchains and build a healthy
ecosystem to provide end users a broad spectrum of platforms
of choice for their applications. To this end, ZILLIQA will seek
technical solutions to support gradual cross-chain communi-
cation and potentially enable cross-chain applications.

Privacy-preserving computation. It is desirable for several
applications in particular (financial modeling applications)
to have strong privacy and intellectual property protection
when running on ZILLIQA. Solutions based on Oblivious
RAM to hide access pattern on an encrypted data [21], ZK-
SNARK [22] to hide the input to a program, and private
function evaluation [23] to hide the contract’s business logic
are also being investigated.

XI. CONCLUSION

In this whitepaper, we have presented ZILLIQA’s sharding
architecture that allows the mining network to process trans-
actions in parallel and reach high throughput. ZILLIQA also
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comes with a unique smart contract platform that leverages
the underlying sharing architecture and follows a dataflow
programming paradigm. The new smart contract language is
ideal for running computation-intensive task in an efficient
manner.
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APPENDIX A
SCHNORR DIGITAL SIGNATURE ALGORITHM

A. EC-Schnorr (Single Signer) Scheme

EC-Schnorr works on a group where the discrete logarithm
is hard [8], [24], [25]. ZILLIQA uses the elliptic curve group
defined over the popular secp256k1 curve. We denote by
C := (p,G, n) the set of parameters that define the group,
where p is a prime number that specifies the underlying field
Fp, G is the base point on the curve and n (a prime) is the
order of G. EC-Schnorr also requires a cryptographic hash
function H that we instantiate with SHA3-256 [6].

EC-Schnorr is a set of three algorithms KeyGen, Sign
and Verify that we present in this section. In the algorithms
below, for any scalar x and a point Q, we denote the scalar
multiplication by [x]Q.

1) KeyGen(C): The algorithm takes the curve parameters
C and returns a pair of public (pk) and private (sk) keys.

1. Choose sk $← [1, n− 1],
2. Set pk ← [sk]G,
3. return (pk, sk).

KeyGen(C = (p,G, n))

2) Sign(C, pk, sk,m): This algorithm is run by the signer. It
takes the curve parameters C, a public key and a private
key pair (pk, sk) and a message to sign m ∈ {0, 1}∗. It
returns a signature σ.

1. Choose k $← [1, n− 1],
2. Set Q← [k]G,
3. Set r ← H(Q||pk||m) mod n,
4. If r = 0 Goto 1.
5. Set s← k − r · sk mod n,
6. If s = 0 Goto 1.
7. Set σ ← (r, s),
8. return σ.

Sign(C, pk, sk,m)
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3) Verify(C, σ, pk,m): This algorithm is run by a verifier
who wishes to check the validity of a signature. It takes
the curve parameters C, a signature σ, a public key pk
and a message m. It returns 1 if the signature is valid for
m under pk, or else returns 0.

1. Parse (r, s)← σ,
2. If r, s /∈ [1, n− 1] return 0.
3. Set Q← [s]G+ [r]pk,
4. If Q = O(neutral point) return 0.
5. Set v ← H(Q||pk||m) mod n,
6. If v = r return 1, else return 0.

Verify(C, σ, pk,m)

B. EC-Schnorr Multisignature Scheme

1) Setting & Assumptions: EC-Schnorr can also be used
as a multisignature scheme [11]. In a multisignature scheme,
we have T signers: P1, . . . , PT , an aggregator and a verifier.
The signers wish to jointly sign a message m. The aggregator
plays the role of a facilitator and aggregates the signatures sent
by each individual signer. The verifier verifies the aggregated
signature. The role of aggregator and the verifier can be played
by the same entity.

Each signer Pi has her own public private key pair (pki, ski)
for EC-Schnorr single signer scheme. We denote by P =
{pk1, . . . , pkT } the set of all public keys. We also assume
a public message mp known to every entity. The message mp

may be specific to the application scenario and make take
the following form: I know the private key for
my public key for the session id: XXXX. The
purpose of this message is to defeat certain known attacks
on the scheme [26].

2) Multisignature Protocol: Multisignature is an interactive
protocol between signers, the aggregator and the verifier
(see Figure 2 for a schematic representation). The protocol
has six steps as described below.

1) (One-Time) Identity Setup: This step is run between
each participant and the verifier. At the start of the pro-
tocol, each signer Pi if not currently involved in another
signing protocol generates an EC-Schnorr signature σi on
the message mp. Pi then sends (σi, pki) to the verifier.
The verifier then performs the following checks:

a) Check if pki ∈ P . If the check fails, the verifier aborts.
b) Check if each σi is a valid EC-Schnorr signature on

mp for pki, by invoking Verify(C, σi, pki,mp). Verifier
aborts if any of these signature verifications returns
0. If all the signatures are valid, then the protocol
proceeds to the next step.

If the verifier does not receive σi for every pki in P ,
she also aborts. To record whether/or not she received
a signature from Pi, she uses a bitmap Z[1, . . . , |P |].
Identity Setup is a one-time process followed by any
number of the next steps. Only if the set up successfully
terminates, the next steps of the protocol can start.

2) Commitment Generation: Each signer Pi then choses a
random ki

$← [1, n−1] and computes Qi = [ki]G. Recall
that G is the base point on the elliptic curve and n is the
order of G. Pi then sends Qi to the aggregator.

3) Challenge Generation: The aggregator first computes the
aggregated keys: pk =

∑
pki∈P pki for keys in P . She

also computes Q =
∑

iQi for Qi’s received in the pre-
vious step. She then computes r ← H(Q||pk||m) mod n
and sends (r,Q, pk) to each Pi.

4) Response Generation: Each signer Pi first checks the
integrity of r received previously. This is done by re-
computing H(Q||pk||m) and checking if it is equal to the
received r. If the check fails then Pi aborts the protocol
or else generates si ← (ki− r · ski) mod n and sends si
to the aggregator.

5) Response Aggregation: Aggregator computes the ag-
gregated response s =

∑
i si mod n and builds an

aggregated signature σ = (r, s). She then sends (m,σ)
to the verifier.

6) Signature Verification: Verifier now checks whether the
signature is valid. She performs the following steps:

a) Aggregate the public keys in P as pk′.
b) Check if σ is a valid EC-Schnorr signature on m for

the public key pk′ by invoking Verify(C, σ, pk′,m).
Returns the output of Verify.

APPENDIX B
MULTISIGNATURE FOR PBFT

Classical EC-Schnorr multisignature protocol as described
in Appendix A requires the participation of all the participants.
Hence, we cannot directly use it in the PBFT setting, where,
we only require that the message be signed by at least 2

3n+1
nodes in the committee. In this section, we present a tweak
to this protocol inspired from [14]. The tweak consists in
maintaining two bitmaps that record the participation in the
protocol. The modified protocol is given in Figure 3. Below,
we briefly present the protocol.

1) (One-Time) Identity Setup: This step is exactly the same
as in the classical EC-Schnorr multisignature protocol as
presented in Appendix A. Only if the set up successfully
terminates, the next steps of the protocol can start.

2) Commitment Generation: This step is similar to the
classical EC-Schnorr multisignature protocol. The only
difference being that each participant Pi also sends its
public key pki along with a Qi to the aggregator.

3) Challenge Generation: At this step the aggregator main-
tains a bitmap BQ[1, . . . , |P |] initialized to 0. For every
(Qi, pki) received in the previous step, the aggregator sets
BQ[i] to 1. The aggregator waits for a stipulated time to
handle network propagation delay and then computes the
following:

a) The aggregated keys: pk ←
∑

pki∈P pki ·BQ[i], i.e.,
she adds the public keys for which she received a Qi.

b) She also computes Q ←
∑

i:BQ[i]=1Qi for Qi’s
received in the previous step.
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Pi(C,mp,m, pki, ski) Aggregator (C,m,P ) Verifier (C,mp, P, Z)

σi ← Sign(C, pki, ski,mp)
(σi, pki)

if pki /∈ P abort
if ¬Verify(C, σi, pki,mp) abort
Z[i] = 1
At the end of the setup phase:
if ¬Z[i] abort

ki
$← [1, n− 1]

Qi ← [ki]G
Qi

pk ←
∑

pki∈P pki
Q←

∑
iQi

r ← H(Q||pk||m)
(r,Q, pk)

r′ ← H(Q||pk||m)
if r′ 6= r abort
si ← (ki − r · ski) mod n

si

s←
∑

i si mod n
σ ← (r, s)

(m,σ)

pk′ ←
∑

pki∈P pki
return Verify(C, σ, pk′,m)

Fig. 2: Multisignature using EC-Schnorr. Verifier stores a bit map Z[1, . . . , |P |], where each entry is initialized to 0.

c) She then computes r ← H(Q||pk||m) mod n and
sends (r,Q, pk) to each Pi.

4) Response Generation: This step is similar to the classical
EC-Schnorr multisignature protocol. The only difference
being that each participant Pi also sends its public key
pki along with a si to the aggregator.

5) Response Aggregation: At this step the aggregator main-
tains a bitmap Bs[1, . . . , |P |] initialized to 0. For every
(si, pki) received in the previous step, the aggregator
checks if the received si is valid by computing Q′i ←
[si]G + [r]pki and then verifying if Q′i is equal to the
received Qi. If the two values are equal then she sets
Bs[i] to 1. This step allows to detect participants who
send an arbitrary value of si and attempt to mount a DoS
attack. The aggregator then waits for a stipulated time to
handle network propagation delay and then computes the
following:

a) If the two bitmaps BQ and Bs are equal, which
means the same set of participants sent messages to the
aggregator in the commitment generation and response
generation steps, then the aggregator computes the
aggregated response s =

∑
i si mod n and builds

an aggregated signature σ = (r, s). She then sends
(σ,m,BQ) to the verifier.

b) If the two bitmaps are not equal, which means a
participant sent a Qi but not the corresponding si, then
the aggregator computes the set-theoretic difference
of BQ and Bs, i.e., the set of public keys pki ∈ P
for which the aggregator received a Qi but not the
corresponding si. The corresponding set of public keys
can then be blacklisted. The aggregator re-initializes
Bs to 0 and computes the intersection between BQ and
Bs and stores it in BQ. Finally, it repeats the protocol
starting from the challenge generation step.

6) Signature Verification: The verifier first checks if the
signature was generated by at least 2

3 |P |+1 participants
and then checks whether the multisignature is valid. The
rest of the steps are same as in the classical EC-Schnorr
multisignature protocol.
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Pi(C,mp, pki, ski) Aggregator (C,m,BQ, Bs, P ) Verifier (C,mp, P, Z)

σi ← Sign(C, pki, ski,mp) (σi, pki)

if pki /∈ P abort
if ¬Verify(C, σi, pki,mp) abort
Z[i] = 1
At the end of the setup phase:
if ¬Z[i] abort

ki
$← [1, n− 1]

Qi ← [ki]G
(Qi, pki)

if pki ∈ P then BQ[i]← 1

1© After a certain stipulated time:
pk ←

∑
pki∈P pki ·BQ[i]

Q ←
∑

i:BQ[i]=1Qi

r ← H(Q||pk||m) mod n

(r,Q, pk)

r′ ← H(Q||pk||m)
if r′ 6= r abort
si ← (ki − r · ski) mod n

(si, pki)

Q′i ← [si]G+ [r]pki
if Q′i = Qi then:
Bs[i]← 1

After a certain stipulated time:
if Bs = BQ then:
s ← (

∑
i:Bs[i]=1 si) mod n

σ ← (r, s)
else:

May blacklist BQ 	Bs

BQ ← BQ ∧Bs

Bs ← 0|P |

goto 1©

(σ,m,BQ)

if
∑

iBQ[i] < 2|P |/3 + 1 then:
return 0

pk′ ←
∑

pki∈P pki ·BQ[i]

return Verify(C, σ, pk′,m)

Fig. 3: EC-Schnorr multisignature variant used in PBFT. The leader of each committee plays the role of the aggregator. The
aggregator maintains two bitmaps BQ[1, . . . , |P |] and Bs[1, . . . , |P |], while the verifier stores a bit map Z[1, . . . , |P |]. The
entries of the bitmaps are initialized to 0. BQ	Bs returns a bitmap that represents the set-theoretic difference of BQ and Bs,
i.e., it represents the set of public keys pki ∈ P for which the aggregator received a Qi but not the corresponding si.
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